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Abstract

Two-dimensional finite difference lattice Boltzmann models for single-component fluids are discussed and the cor-

responding macroscopic equations for mass and momentum conservation are derived by performing a Chapman–

Enskog expansion. In order to recover the correct mass equation, characteristic-based finite difference schemes should

be associated with the forward Euler scheme for the time derivative, while the space centered and second-order upwind

schemes should be associated to second-order schemes for the time derivative. In the incompressible limit, the char-

acteristic based schemes lead to spurious numerical contributions to the apparent value of the kinematic viscosity in

addition to the physical value that enters the Navier–Stokes equation. Formulae for these spurious numerical viscosities

are in agreement with results of simulations for the decay of shear waves.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Lattice Boltzmann (LB) models are derived from the continuous Boltzmann equation with the collision

term in the Bhatnagar–Gross–Krook (BGK) approximation [1,2] after convenient discretization of the

phase space [3,4]. Classical two-dimensional (2D) LB models (see [5–8] and references therein) for iso-

thermal two-component fluid systems (e.g., the so-called D2Q9 model [9]) use a discrete lattice L where

particle distribution functions f r
i ðx; tÞ defined at each lattice node x 2 L are updated after each time-step dt

in accordance to the following evolution equations:

f r
i ðxþ ei; t þ dtÞ ¼ f r

i ðx; tÞ �
1

sr
½f r

i ðx; tÞ � f r;eq
i ðx; tÞ� ðr ¼ 0; 1; i ¼ 0; 1; . . . ; 8Þ: ð1Þ
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Here the distribution function f r
i ðx; tÞ; r ¼ 0; 1, is the probability of finding at node x 2 L a particle

belonging to component r having the velocity ei, f
r;eq
i are the corresponding equilibrium distribution

functions and sr are relaxation times. The nine velocities are given by

ei ¼

0 ði ¼ 0Þ;
cos pði�1Þ

2
; sin pði�1Þ

2

h i
c ði ¼ 1; . . . ; 4Þ;

cos p
4
þ pði�5Þ

2

� �
; sin p

4
þ pði�5Þ

2

� �h i ffiffiffi
2

p
c ði ¼ 5; . . . ; 8Þ;

8>>><
>>>:

ð2Þ

where the propagation speed c of particles moving between a lattice node and its nearest neighbors has the

same value for both fluid components. The value of c is related to the lattice spacing ds through

ds ¼ cdt: ð3Þ

In most simulations, the value of c, as well as the value of the time-step dt are usually set to 1, which results

in a lattice spacing ds of unit length.
Recent investigations [3,4,10] resulted in a general procedure to construct lattice Boltzmann models for

single-component fluids. This procedure starts from the Boltzmann equation and employs a discretization

of the phase space. The application of this procedure to an isothermal two-component fluid system whose
particles have different masses mr 6¼ m�rr ð�rr ¼ 1� r; r ¼ 0; 1Þ is inappropriate because these lead to two

different values

cr ¼

ffiffiffiffiffiffiffiffi
kBT
vmr

s
ðr ¼ 0; 1Þ ð4Þ

for the propagation speed c in (2). Here kB is Boltzmann�s constant, T is the fluid temperature and v ¼ 1=3
for the D2Q9 model [10]. The constant v has different values for other LB models (e.g., v ¼ 1=4 for the
D2Q7 model introduced in [9]).

Since (4) is a very general result derived from the requirement that the phase space discretization has to

be done in such a way that hydrodynamic moments up to third order of the Boltzmann equation are

preserved exactly for isothermal LB models, the relation (3) should be rejected for multicomponent fluid

systems (e.g., two-component systems) in order to allow for the general case when thermal speeds are

different because the masses of the component particles are not identical. This means that the discretization

of the velocity space should not be related to the discretization of the coordinate space in a simple way, as in

classical LB models defined by (1) and (3).
To overcome this problem, finite difference lattice Boltzmann models (FDLB) may be used [11–15]. In

these models, the set of the classical LB evolution equations for a two-component fluid (1) is replaced by the

set of Nþ 1 discretized Boltzmann equations ðot :¼ o=otÞ:

otf r
i ðx; tÞ þ er

i � rf r
i ðx; tÞ ¼ � 1

sr
f r
i ðx; tÞ

�
� f r;eq

i ðx; tÞ
�

ðr ¼ 0; 1; i ¼ 0; 1; . . . ;NÞ ð5Þ

for all nodes x 2 L (note that we do not sum over repeated i subscripts in the equations above). When

using a square lattice, N ¼ 8 and the velocities er
i are similar to those in the D2Q9 model

er
i ¼

0 ði ¼ 0Þ;
cos pði�1Þ

2
; sin pði�1Þ

2

h i
cr ði ¼ 1; . . . ; 4Þ;

cos p
4
þ pði�5Þ

2

� �
; sin p

4
þ pði�5Þ

2

� �h i ffiffiffi
2

p
cr ði ¼ 5; . . . ; 8Þ;

8>>><
>>>:

ð6Þ

V. Sofonea, R.F. Sekerka / Journal of Computational Physics 184 (2003) 422–434 423



except the speeds cr ðr ¼ 0; 1Þ are given by (4) and thus, jer
i j 6¼ je�rri j for mr 6¼ m�rr. When using a hexagonal

lattice (D2Q7 model), N ¼ 6 and the velocities er
i are

er
i ¼

0 ði ¼ 0Þ;
cos pði�1Þ

3
; sin pði�1Þ

3

h i
cr ði ¼ 1; . . . ; 6Þ:

(
ð7Þ

Although the viscosity of each fluid component is controlled by the corresponding relaxation time s,
finite difference schemes for the er

i � r operator in (5) may introduce a spurious numerical viscosity in

addition to the physical viscosity in the Navier–Stokes equation. To clarify this subject, we discuss some

first- and second-order finite difference schemes for a single-component fluid and provide a derivation of the

apparent value of the kinematic viscosity for each case.

2. Finite difference lattice Boltzmann models

For convenience, we consider a single-component fluid whose particles have the mass m. In this case, we

do not need the superscript r ¼ 0; 1 used for the two-component system in (5) and the LB evolution

equations are

otfiðx; tÞ þ ei � rfiðx; tÞ ¼ � 1

s
½fiðx; tÞ � f eq

i ðx; tÞ� ði ¼ 0; 1; . . . ;NÞ; ð8Þ

whereN ¼ 8 orN ¼ 6. As in classical LB models, the equilibrium distribution functions in (8) are given as
series expansions in the local velocity u � uðx; tÞ

f eq
i ðx; tÞ ¼ win 1

"
þ ei � u

vc2
þ ðei � uÞ2

2v2c4
� u � u
2vc2

#
ði ¼ 0; 1; . . . ;NÞ; ð9Þ

where n � nðx; tÞ is the local particle number density and c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=vm

p
is the thermal speed. For the D2Q9

model, the weight factors wi are

wi ¼

4
9

ði ¼ 0Þ;
1
9

ði ¼ 1; . . . ; 4Þ;
1
36

ði ¼ 5; . . . ; 8Þ;

8><
>: ð10Þ

while for the D2Q7 model these factors are

wi ¼
1
2

ði ¼ 0Þ;
1
12

ði ¼ 1; . . . ; 6Þ:

�
ð11Þ

For both models, the Cartesian projections eia � ðeiÞa ði ¼ 0; 1; . . . ;N; a ¼ x; yÞ of the velocities ei satisfy
the relationsX

i

wieia ¼ 0;

X
i

wieiaeib ¼ vc2dab;X
i

wieiaeibeic ¼ 0;

X
i

wieiaeibeiceid ¼ v2c4ðdabdcd þ dbcdda þ dacdbdÞ:

ð12Þ
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Using the expression (9) of the equilibrium distribution functions, the following sums are easily com-

puted:X
i

f eq
i ¼ n;

X
i

eiaf
eq
i ¼ nua;X

i

eiaeibf
eq
i ¼ n½vc2dab þ uaub�;X

i

eiaeibeicf
eq
i ¼ nvc2½dabuc þ dbcua þ dcaub�:

ð13Þ

Here ua ða ¼ x; yÞ are the Cartesian components of the local velocity uðx; tÞ.
The set of phase space discretized Boltzmann equations (8) for the distribution functions fi � fiðx; tÞmay

be solved numerically by using an appropriate finite difference scheme defined on the lattice L. When using

a scheme based on characteristics, the forward Euler difference is used to compute the time derivative and
the distribution functions are updated at each lattice node in accordance with

fiðx; t þ dtÞ ¼ fiðx; tÞ � dt ei � rfiðx; tÞ �
dt
s
½fiðx; tÞ � f eq

i ðx; tÞ�: ð14Þ

Two second-order schemes may be used to compute the time derivative in (8): the midpoint scheme

fiðx; t þ dtÞ ¼ fiðx; t � dtÞ � 2dt ei � rfiðx; tÞ �
2dt
s

½fiðx; tÞ � f eq
i ðx; tÞ� ð15Þ

or the Runge–Kutta scheme [14,16]

fiðx; t þ dtÞ ¼ fiðx; tÞ � dt ei � rfiðx; t þ dt=2Þ � dt
s ½fiðx; t þ dt=2Þ � f eq

i ðx; t þ dt=2Þ�: ð16Þ

There are several possibilities [16–18] to compute the term ei � rfiðx; tÞ in hyperbolic equations like

(8). For this purpose, we use the Cartesian projections eia � ðeiÞa ði ¼ 0; 1; . . . ;N; a ¼ x; yÞ of the

velocities ei:

(a) First-order upwind scheme

ei � rfiðx; tÞ ¼
c
ds

½fiðx; y; tÞ � fiðx� dseix=c; y � dseiy=c; tÞ�: ð17Þ

(b) Space centered scheme

ei � rfiðx; tÞ ¼
c
2ds

½fiðxþ dseix=c; y þ dseiy=c; tÞ � f ðx� dseix=c; y � dseiy=c; tÞ�: ð18Þ

(c) Second-order upwind scheme

ei � rfiðx; tÞ ¼
c
2ds

½3fiðx; y; tÞ � 4fiðx� dseix=c; y � dseiy=c; tÞ þ f ðx� 2dseix=c; y � 2dseiy=c; tÞ�: ð19Þ

(d) Lax scheme (also called Lax–Friedrichs scheme)

ei � rfiðx; tÞ ¼
1

dt
fiðx; y; tÞ

�
� 1

2
1

�
� cdt

ds

�
fiðxþ dseix=c; y þ dseiy=c; tÞ

� 1

2
1

�
þ cdt

ds

�
fiðx� dseix=c; y � dseiy=c; tÞ

�
: ð20Þ
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(e) Lax–Wendroff scheme

ei � rfiðx; tÞ ¼
c
2ds

½fiðxþ dseix=c; y þ dseiy=c; tÞ � f ðx� dseix=c; y � dseiy=c; tÞ�

� 1

2

c2dt

ðdsÞ2
½fiðxþ dseix=c; y þ dseiy=c; tÞ � 2f ðx; y; tÞ þ f ðx� dseix=c; y � dseiy=c; tÞ�:

ð21Þ

(f) Beam–Warming scheme

ei � rfiðx; tÞ ¼
c
2ds

3

��
� cdt

ds

�
fiðx; y; tÞ þ

2cdt
ds

�
� 4

�
fiðx� dseix=c; y � dseiy=c; tÞ

þ 1

�
� cdt

ds

�
fiðx� 2dseix=c; y � 2dseiy=c; tÞ

�
: ð22Þ

3. Physical viscosity and fluid equations

Two techniques may be used to derive the fluid equations from the Boltzmann equation (8): the method
of moments of Grad [19–21] or the Chapman–Enskog expansion [5–8]. We will use the last approach and

formally expand the distribution functions using a small parameter e ¼ cs=L (the Knudsen number), where

L is the system size

fi ’ f ð0Þ
i þ ef ð1Þ

i þ e2f ð2Þ
i þ � � � ð23Þ

Two time scales and one length scale are also adopted

t1 ¼ te; ð24Þ

t2 ¼ te2; ð25Þ

r1 ¼ re; ð26Þ

such that the time and space derivative are expressed as

ot ¼ eot1 þ e2ot2 ; ð27Þ

rr ¼ err1 ð28Þ

(for convenience, we will use the notation ob1 :¼ o=ox1b). The above expressions of the derivatives are
substituted into Eq. (8) and terms involving e to zeroth-, first- and second-order are separated to yield

0 ¼ � 1

s
f ð0Þ
i

h
� f eq

i

i
; ð29Þ

ot1f
ð0Þ
i þ eibob1f

ð0Þ
i ¼ � 1

s
f ð1Þ
i ; ð30Þ

ot2f
ð0Þ
i þ ot1f

ð1Þ
i þ eibob1f

ð1Þ
i ¼ � 1

s
f ð2Þ
i : ð31Þ
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From (29), we get

f ð0Þ
i ¼ f eq

i ði ¼ 0; 1; . . . ;NÞ: ð32Þ

The zeroth-, first- and second-order mass conservation equations are recovered from Eqs. (29)–(31) after

summation with respect to i (for convenience, multiplication with m is omitted here):

� 1

s

X
i

f ð0Þ
i

h
� f eq

i

i
¼ 0; ð33Þ

ot1

X
i

f ð0Þ
i þ ob1

X
i

f ð0Þ
i eib ¼ � 1

s

X
i

f ð1Þ
i ; ð34Þ

ot2

X
i

f ð0Þ
i þ ot1

X
i

f ð1Þ
i þ ob1

X
i

f ð1Þ
i eib ¼ � 1

s

X
i

f ð2Þ
i : ð35Þ

The zeroth-, first- and second-order momentum conservation equations are recovered from Eqs. (29)–

(31) after multiplication with m eia and summation with respect to i:

� 1

s

X
i

m f ð0Þ
i

h
� f eq

i

i
eia ¼ 0; ð36Þ

ot1

X
i

mf ð0Þ
i eia þ ob1

X
i

mf ð0Þ
i eiaeib ¼ � 1

s

X
i

mf ð1Þ
i eia; ð37Þ

ot2

X
i

mf ð0Þ
i eia þ ot1

X
i

mf ð1Þ
i eia þ ob1

X
i

mf ð1Þ
i eiaeib ¼ � 1

s

X
i

mf ð2Þ
i eia: ð38Þ

The local particle number density n and the local velocity u are given by

n ¼
X
i

fi ¼
X
i

f eq
i ; u ¼ 1

n

X
i

fiei ¼
1

n

X
i

f eq
i ei: ð39Þ

Thus, from the zeroth-order mass and momentum equations (33) and (36), we getX
i

f ðlÞ
i ¼ 0;

X
i

f ðlÞ
i ei ¼ 0 8lP 1: ð40Þ

To recover the mass conservation equation up to second order with respect to the Knudsen number, we

sum Eqs. (33)–(35) together after multiplication with e0, e1 and e2, respectively (q ¼ mn):

otq þ obðqubÞ ¼ 0: ð41Þ

The Euler equation

ot1ðquaÞ þ ob1ðquaubÞ ¼ �oa1p ð42Þ

is recovered from the first-order momentum equation (37) using Eqs. (13), (40), as well as the definition of

the ideal gas pressure

p :¼ nkBT ¼ vc2q: ð43Þ
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If we add the first- and second-order momentum equations (37) and (38), we get

otðquaÞ þ obPab ¼ 0; ð44Þ

where the momentum flux density tensor Pab is given by

Pab ¼ Pð0Þ
ab þ ePð1Þ

ab ; ð45Þ

Pð0Þ
ab ¼ m

X
i

eiaeibf
ð0Þ
i ¼ pdab þ quaub; ð46Þ

Pð1Þ
ab ¼ m

X
i

eiaeibf
ð1Þ
i ¼ �snkBT ½oa1ub þ ob1ua�: ð47Þ

To get the above expression of Pð1Þ
ab , we first express f ð1Þ

i from (30) and use (13):

Pð1Þ
ab ¼ �sot1 ½dabnkBT þ quaub� � skBT ½daboc1ðnucÞ þ oa1ðnubÞ þ ob1ðnuaÞ�: ð48Þ

Then we use the first-order mass and momentum equations (34) and (37) to get

ot1ðnkBT Þ ¼ �kBToc1ðnucÞ; ð49Þ

ot1ðquaubÞ ¼ �kBT ½uaob1nþ uboa1n� � oc1ðquaubucÞ; ð50Þ
’ �kBT ½uaob1nþ uboa1n�: ð51Þ

The product uaubuc is neglected since the LB model and the series expansion (9) are valid only for small

Mach number (u=c � 1).

The final form of the momentum equation (44) is

otðquaÞ þ obðquaubÞ ¼ �oap þ mob½qoaub þ qobua�: ð52Þ

The Navier–Stokes equation is recovered from this equation in the incompressible limit (obub ¼ 0)

otua þ ubobua ¼ � 1

q
oap þ mr2ua: ð53Þ

Here m is the physical value of the kinematic viscosity of the single-component fluid

m ¼ svc2 ¼ skBT =m: ð54Þ

The above expression of the kinematic viscosity, which can be derived also using the method of moments
[20,21], is of principal importance since it expresses the fact that the behavior of the fluid we simulate with

the LB model is independent of the discretization of the velocity space (i.e., independent of N or v).
However, the numerical scheme used in the LB model may introduce a spurious viscosity term that adds to

the physical value (54), as seen in the following section.

4. Numerical viscosity and apparent viscosity of finite difference lattice Boltzmann models

After performing a series expansion up to second order in Eqs. (17)–(22), we get (for convenience,

simply write fi instead of fiðx; tÞ and oa :¼ o=oxa; summation over repeated Greek indices is

understood):
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ei � rfi ¼ eibobfi � weibeicobocfi; ð55Þ

where the expression of the factor w is given in Table 1 for all schemes introduced in Section 2. A similar

procedure may be considered for the finite difference schemes used to compute the time derivatives. This
means that the real LB equations solved using the updating schemes (14) or (15) are, up to second order in

the lattice spacing ds ði ¼ 0; 1; . . . ;NÞ

otfi þ ho2t fi þ ei � rfi � weibeicobocfi ¼ � 1

s
½fi � f eq

i � ð56Þ

instead of Eqs. (8). The factor h introduced in the equation above has the value h ¼ dt=2 when the forward

Euler scheme (14) is considered. This factor vanishes when the second-order scheme (15) is considered to

compute the time evolution of the distribution functions.

To investigate the effect of the supplementary terms in (56), we refer to the previously discussed
derivation of the mass and momentum equations from the Boltzmann equation. The zeroth and first-

order LB equations (29), (30) remain unchanged when performing the Chapman–Enskog expansion,

while the second-order equation (31) becomes, after using (30) to express the second-order time deriv-

ative,

ot2f
ð0Þ
i þ 1

�
� h

s

�
ot1f

ð1Þ
i þ 1

�
þ h

s

�
eibob1f

ð1Þ
i � ½w � h�eibeicob1oc1f

ð0Þ
i ¼ � 1

s
f ð2Þ
i : ð57Þ

The same second-order LB equation as above (with h ¼ 0) is recovered when using the Runge–Kutta

updating scheme (16). This may be easily checked from the real LB equations solved using this scheme:

otfi þ ei � rfi � weibeicobocfi ¼
dt
2

�
� o2t fi þ eibeicobocfi þ

1

s
ðeibob � otÞðfi � f eq

i Þ
�

� dt
8s

o2t ½fi � f eq
i � � 1

s
½fi � f eq

i �: ð58Þ

Consequently, the general mass and momentum equations recovered using the finite difference schemes

introduced in Section 2, are (up to second order in the Knudsen number e):

otq þ obðqubÞ � ½w � h�oboc½vc2qdbc þ qubuc� ¼ 0; ð59Þ

otðquaÞ þ obðquaubÞ ¼ �oap þ vc2½s þ h�ob½qoaub þ qobua� þ vc2½w � h�½2oaobðqubÞ þ r2ðquaÞ�: ð60Þ

Table 1

Expressions of the factors w and w � h which appear in Eqs. (56), (59) and (60), for all finite difference schemes introduced in Section 2

ei � r w w � h

Forward Euler (14) h ¼ dt=2 Second-order schemes (15) and (16) h ¼ 0

First-order upwind (17)
ds
2c

1
2

ds
c � dt

� �� ds
2c

Space centered (18) 0 � dt
2

0

Second-order upwind (19) 0 � dt
2

0

Lax (20)
ðdsÞ2
2c2dt

1
2

ðdsÞ2
c2dt � dt

h i� ðdsÞ2
2c2dt

Lax–Wendroff (21)
dt
2

0 dt
2

Beam–Warming (22)
dt
2

0 dt
2

Expressions marked * vanish for CFL ¼ 1. In the incompressible limit, the apparent viscosity is given by Eq. (62) in all cases.
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For all finite difference schemes considered in Section 2, the correct mass equation is apparently re-

covered when

w ¼ h: ð61Þ

However, in the incompressible limit (q ¼ constant and small Mach number, which means ubuc ’ 0), the

correct mass equation is still recovered for w 6¼ h.
When the forward Euler scheme (14) is associated to the first-order upwind scheme (17) or the Lax

scheme (20), condition (61) means that the Courant–Friedrichs–Levy number CFL :¼ cdt=ds equals 1. As

mentioned previously, this condition is always satisfied in the classical LB models. From Table 1 we see that
Eq. (61) is automatically satisfied by the Lax–Wendroff (21) and Beam–Warming (22) schemes if associated

to the Euler scheme (14), but cannot be satisfied by these two schemes (as well as by the first-order upwind

and the Lax scheme) when associated to the second-order updating schemes (15) and (16). Alternatively,

Eq. (61) is automatically satisfied when the space centered scheme (18) or the second-order upwind scheme

(19) are associated only to the second-order time updating schemes (15) or (16).

If we consider the momentum equation in the incompressible limit, the Navier–Stokes equation (53) is

recovered with the apparent value of the kinematic viscosity:

m ¼ vc2½s þ w� ¼ skBT
m

½1þ w=s� ð62Þ

regardless of the updating procedure, Eq. (14), (15) or (16). Thus, the finite difference scheme used for the

calculation of the space derivative in the LB evolution equations may generate a spurious numerical vis-

cosity term vc2w which adds to the physical value (54) of the kinematic viscosity in the Navier–Stokes

equation (53).

For the first-order upwind scheme, the apparent value of the viscosity

m ¼ vc2 s

�
þ ds
2c

�
ð63Þ

is linearly dependent on the lattice spacing and is always larger than the physical value (54). In particular,

when CFL ¼ 1 and (3) is satisfied, the apparent value of the kinematic viscosity becomes

m ¼ 1

2
vc2½2s þ dt�: ð64Þ

If we rewrite (63) using the definition of the Knudsen number, we get

m ¼ svc2 1

�
þ ds
2eL

�
¼ svc2 1

�
þ 1

2eN

�
¼ vcL e

�
þ 1

2N

�
; ð65Þ

where N ¼ L=ds is the number of lattice nodes. Consequently, a large number of lattice nodes N (i.e., a huge

computing effort, especially at small Knudsen number e) is required to maintain the apparent value of the
kinematic viscosity close to the physical value when using the upwind scheme associated to the first-order

updating scheme (14) to simulate the behavior of fluid systems.

The physical value (54) of the kinematic viscosity is always recovered in the incompressible limit if we use

the second-order space centered finite difference scheme (18) or the second-order upwind scheme (19) for

approximating the time derivative. Thus, there is no spurious numerical contribution to the kinematic

viscosity (i.e., no numerical viscosity) induced by these finite difference LB models which are second order

in space.

In the incompressible regime, the apparent value of the kinematic viscosity recovered with the Lax
scheme is
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m ¼ 1

2
vc2 2s

"
þ ðdsÞ2

c2dt

#
: ð66Þ

Note that (64) is recovered in the Lax scheme when the condition (3) is satisfied. For the Lax–Wendroff and

Beam–Warming schemes, the apparent value of the kinematic viscosity is identical to (64), even if the

condition (3) is no longer required. This value is independent of the lattice spacing but is linearly dependent

on the time-step dt, regardless of whether the condition (3) is satisfied or not.

5. Apparent viscosity of the classical LB model

Instead of Eqs. (8), we consider now the slightly modified set of LB evolution equations

otfiðx; tÞ þ ei � rfiðx; tÞ ¼ � 1

s
½fiðx� eidt; tÞ � f eq

i ðx� eidt; tÞ� ðr ¼ 0; 1; i ¼ 0; 1; . . . ;NÞ: ð67Þ

This set is equivalent to the classical LB equations (1) for a single-component fluid when the first-order

upwind finite difference scheme (17) is used and the condition (3) is satisfied. To derive the viscosity formula
using the Chapman–Enskog procedure, we make a series expansion of the right-hand side of (67) and

express the term eirfiðx; tÞ using the first-order upwind scheme (17). The second-order Boltzmann equation

with respect to the Knudsen number e becomes

ot2f
ð0Þ
i þ ot1f

ð1Þ
i þ eibob1f

ð1Þ
i � 1

2

ds
c
eibeicob1oc1f

ð0Þ
i ¼ � 1

s
½f ð2Þ

i � dteibob1f
ð1Þ
i �; ð68Þ

while the zeroth- and first-order Boltzmann equations are identical to Eqs. (29) and (30), respectively.

Consequently, the apparent kinematic viscosity of this model is

m ¼ 1

2
vc2½2s þ ds

c
� 2dt�: ð69Þ

In the particular case (3) we get

m ¼ 1

2
vc2½2s � dt�; ð70Þ

i.e., the well-known viscosity formula of classical LB models (note that in these models, dt is usually set to 1).

6. Numerical results

To check the validity of the viscosity formulae derived in Section 4, we used the attenuation of shear

waves whose wavelength equals the system size L. Thus the magnitude of the wavevector is k ¼ 2p=L. At the

initial moment t ¼ 0, the velocity field of the fluid was uxðx; y; 0Þ ¼ u0 sinðkyÞ; uyðx; y; 0Þ ¼ 0 for 06 x; y < L,
where u0 is a constant. For ux :¼ uxðy; tÞ, independent of x, the Navier–Stokes equation (53) becomes

otuxðy; tÞ � mo2yuxðy; tÞ ¼ 0; ð71Þ

which admits a solution of the form uxðy; tÞ ¼ u0 expð�k2mtÞ sinðkyÞ. The apparent value of the kinematic

viscosity may be recovered as

m ¼ 1

k2t
log

Að0Þ
AðtÞ ; ð72Þ
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where the Fourier coefficient

AðtÞ ¼
Z L

0

uxðy; tÞ sinðkyÞdy ¼
1

2
Lu0 e�k2mt ð73Þ

is calculated from the numerical results.

We used a lattice of size L ¼ 1 for our simulations with periodic boundary conditions. The non-di-

mensionalized form of the LB evolution equations (8) was used with c ¼ 1 and s ¼ 0:01. To ensure the

incompressible limit (small Mach number), we choose u0 ¼ 0:01. The number N of lattice nodes was varied

in order to achieve various values of the lattice spacing ds while the time-step was kept constant (dt ¼ 10�4).
As seen in Fig. 1(a), the dependence of the apparent value of the kinematic viscosity vs. the lattice spacing

ds is found to be in accordance with the analytical results derived in Section 4. For example, when N ¼ 500,

we get the values 0.003656, 0.003325 and 0.003342 of the apparent kinematic viscosity in the first-order

upwind, space centered and Lax–Wendroff cases, respectively. The relative departure of these values

from the theoretically expected values is far below one percent. Moreover, we should point here that the

Fig. 1. Dependence of the apparent value of the kinematic viscosity m vs. lattice spacing ds for s ¼ 0:01 and dt ¼ 0:0001.

Fig. 2. Dependence of the apparent value of the kinematic viscosity m vs. time-step dt for s ¼ 0:01 and ds ¼ 0:001: (a) Lax scheme;

(b) Lax–Wendroff scheme (+, numerical results; lines, analytical solutions).
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difference between the values of the apparent viscosity recovered using the Lax–Wendroff scheme and the

values recovered using the space centered and the second-order upwind schemes is in good agreement with

Eq. (64). This is evident also in Fig. 1(b), which is an enlarged portion of Fig. 1(a). Fig. 2 shows the de-

pendence of the apparent value of the kinematic viscosity vs. time-step dt for the Lax and Lax–Wendroff

schemes, for constant lattice spacing (ds ¼ 0:001). Good agreement between numerical results and corre-

sponding analytical formulae is clearly seen.

We also explored shear waves of shorter wavelength in the incompressible regime, namely with k0 ¼ nk,
where n is an integer. This introduces a factor of n2 into the exponential damping factor, so that expð�k2mtÞ
in (73) is replaced by expð�k2n2mtÞ. Good agreement with simulations is still obtained so long as ds � L=n,
but of course spatial resolution is lost if n becomes too large.

7. Conclusions

Finite difference LB models, Eqs. (14)–(22), may be appropriate for the general case, Eqs. (5)–(7), of

multicomponent fluid systems (when the masses of particles are different and the thermal speeds (4) of each
species of particles are not identical) only if certain conditions are satisfied. These conditions are provided

by the requirement of correct mass and momentum equations to be recovered using these models.

From the six FDLB schemes introduced in Section 2 in order to compute the term ei � rfiðx; tÞ in the LB

equations (8), the characteristic based schemes (first-order upwind, Lax, Lax–Wendroff and Beam–

Warming) cannot achieve the correct mass equation in the compressible regime (even for CFL ¼ 1) when

associated to the updating procedures (15) and (16), which are second order in time. In order to get the

correct mass equation for the four spatial schemes mentioned above, one can use the forward Euler up-

dating rule (14). Then there is no correction to the mass equation for the Lax–Wendroff and the Beam–
Warming schemes. However, the CFL ¼ 1 condition is needed in the compressible regime to eliminate a

correction for the first-order upwind scheme and the Lax scheme (this condition is no longer required in the

incompressible limit). The opposite holds for the space centered and the second-order upwind schemes: to

recover the correct mass equation in the compressible regime, one of the second-order updating rules (15)

or (16) should be used instead.

All FDLB schemes investigated in this paper give the correct Navier–Stokes equation in the incom-

pressible limit. However, FDLB schemes may introduce a spurious numerical viscosity which is always

added to the physical value of the kinematic viscosity m ¼ svc2 to get an apparent value of this quantity. The
apparent values of the kinematic viscosity we derived in the incompressible limit (see Eq. (62) and Table 1)

are characteristic to each FD scheme used to compute the term ei � rfiðx; tÞ in the LB equations (8), re-

gardless the FD scheme used for the time derivative. No numerical viscosity is introduced in the incom-

pressible limit when using two particular finite difference schemes: the space centered scheme (18) and the

second-order upwind scheme (19).

The classical LB model is recovered as a very special case of the upwind finite difference LB model, when

also the relaxation term is calculated on the characteristics line. The condition s > dt=2, which is required

by the classical LB model in order to get a positive value of the kinematic viscosity during simulations is no
longer required in characteristics based finite difference LB models.
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